1,156 research outputs found

    The Resident Assessment Instrument-Minimum Data Set 2.0 quality indicators: a systematic review

    Get PDF
    BackgroundThe Resident Assessment Instrument-Minimum Data Set (RAI-MDS) 2.0 is designed to collect the minimum amount of data to guide care planning and monitoring for residents in long-term care settings. These data have been used to compute indicators of care quality. Use of the quality indicators to inform quality improvement initiatives is contingent upon the validity and reliability of the indicators. The purpose of this review was to systematically examine published and grey research reports in order to assess the state of the science regarding the validity and reliability of the RAI-MDS 2.0 Quality Indicators (QIs).MethodsWe systematically reviewed the evidence for the validity and reliability of the RAI-MDS 2.0 QIs. A comprehensive literature search identified relevant original research published, in English, prior to December 2008. Fourteen articles and one report examining the validity and/or reliability of the RAI-MDS 2.0 QIs were included.ResultsThe studies fell into two broad categories, those that examined individual quality indicators and those that examined multiple indicators. All studies were conducted in the United States and included from one to a total of 209 facilities. The number of residents included in the studies ranged from 109 to 5758. One study conducted under research conditions examined 38 chronic care QIs, of which strong evidence for the validity of 12 of the QIs was found. In response to these findings, the 12 QIs were recommended for public reporting purposes. However, a number of observational studies (n=13), conducted in &quot;real world&quot; conditions, have tested the validity and/or reliability of individual QIs, with mixed results. Ten QIs have been studied in this manner, including falls, depression, depression without treatment, urinary incontinence, urinary tract infections, weight loss, bedfast, restraint, pressure ulcer, and pain. These studies have revealed the potential for systematic bias in reporting, with under-reporting of some indicators and over-reporting of others.ConclusionEvidence for the reliability and validity of the RAI-MDS QIs remains inconclusive. The QIs provide a useful tool for quality monitoring and to inform quality improvement programs and initiatives. However, caution should be exercised when interpreting the QI results and other sources of evidence of the quality of care processes should be considered in conjunction with QI results.<br /

    Elevated arousal at time of decision-making is not the arbiter of risk avoidance in chickens

    Get PDF
    The somatic marker hypothesis proposes that humans recall previously experienced physiological responses to aid decision-making under uncertainty. However, little is known about the mechanisms used by non-human animals to integrate risk perception with predicted gains and losses. We monitored the behaviour and physiology of chickens when the choice between a high-gain (large food quantity), high-risk (1 in 4 probability of receiving an air-puff) option (HGRAP) or a low-gain (small food quantity), no-risk (of an air-puff) (LGNAP) option. We assessed when arousal increased by considering different stages of the decision-making process (baseline, viewing, anticipation, reward periods) and investigated whether autonomic responses influenced choice outcome both immediately and in the subsequent trial. Chickens were faster to choose and their heart-rate significantly increased between the viewing and anticipation (post-decision, pre-outcome) periods when selecting the HGRAP option. This suggests that they responded physiologically to the impending risk. Additionally, arousal was greater following a HGRAP choice that resulted in an air-puff, but this did not deter chickens from subsequently choosing HGRAP. In contrast to human studies, we did not find evidence that somatic markers were activated during the viewing period, suggesting that arousal is not a good measure of avoidance in non-human animals

    Prognostic value of strain by feature-tracking cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by ventricular dysfunction and ventricular arrhythmias (VA). Adequate arrhythmic risk assessment is important to prevent sudden cardiac death. We aimed to study the incremental value of strain by feature-tracking cardiac magnetic resonance imaging (FT-CMR) in predicting sustained VA in ARVC patients. METHODS AND RESULTS: CMR images of 132 ARVC patients (43% male, 40.6 ± 16.0 years) without prior VA were analysed for global and regional right and left ventricular (RV, LV) strain. Primary outcome was sustained VA during follow-up. We performed multivariable regression assessing strain, in combination with (i) RV ejection fraction (EF); (ii) LVEF; and (iii) the ARVC risk calculator. False discovery rate adjusted P-values were given to correct for multiple comparisons and c-statistics were calculated for each model. During 4.3 (2.0-7.9) years of follow-up, 19% of patients experienced sustained VA. Compared to patients without VA, those with VA had significantly reduced RV longitudinal (P ≤ 0.03) and LV circumferential (P ≤ 0.04) strain. In addition, patients with VA had significantly reduced biventricular EF (P ≤ 0.02). After correcting for RVEF, LVEF, and the ARVC risk calculator separately in multivariable analysis, both RV and LV strain lost their significance [hazard ratio 1.03-1.18, P > 0.05]. Likewise, while strain improved the c-statistic in combination with RVEF, LVEF, and the ARVC risk calculator separately, this did not reach statistical significance (P ≥ 0.18). CONCLUSION: Both RV longitudinal and LV circumferential strain are reduced in ARVC patients with sustained VA during follow-up. However, strain does not have incremental value over RVEF, LVEF, and the ARVC VA risk calculator

    Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes

    Get PDF
    BACKGROUND: Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/−). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. METHODS AND FINDINGS: We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/−) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, p = 0.049; PCR, p = 0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/− vs. +/+ individuals (Mann-Whitney U: p = 0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. CONCLUSIONS: Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely

    Diagnosing arrhythmogenic right ventricular cardiomyopathy by 2010 Task Force Criteria: clinical performance and simplified practical implementation

    Get PDF
    AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diagnosed by a complex set of clinical tests as per 2010 Task Force Criteria (TFC). Avoiding misdiagnosis is crucial to prevent sudden cardiac death as well as unnecessary implantable cardioverter-defibrillator implantations. This study aims to validate the overall performance of the TFC in a real-world cohort of patients referred for ARVC evaluation. METHODS AND RESULTS: We included patients consecutively referred to our centres for ARVC evaluation. Patients were diagnosed by consensus of three independent clinical experts. Using this as a reference standard, diagnostic performance was measured for each individual criterion as well as the overall TFC classification. Of 407 evaluated patients (age 38 ± 17 years, 51% male), the expert panel diagnosed 66 (16%) with ARVC. The clinically observed TFC was false negative in 7/66 (11%) patients and false positive in 10/69 (14%) patients. Idiopathic outflow tract ventricular tachycardia was the most common alternative diagnosis. While the TFC performed well overall (sensitivity and specificity 92%), signal-averaged electrocardiogram (SAECG, P = 0.43), and several family history criteria (P ≥ 0.17) failed to discriminate. Eliminating these criteria reduced false positives without increasing false negatives (net reclassification improvement 4.3%, P = 0.019). Furthermore, all ARVC patients met at least one electrocardiogram (ECG) or arrhythmia criterion (sensitivity 100%). CONCLUSION: The TFC perform well but are complex and can lead to misdiagnosis. Simplification by eliminating SAECG and several family history criteria improves diagnostic accuracy. Arrhythmogenic right ventricular cardiomyopathy can be ruled out using ECG and arrhythmia criteria alone, hence these tests may serve as a first-line screening strategy among at-risk individuals

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students
    corecore